Does Relative Risk Aversion Vary with Wealth? Evidence from Households’ Portfolio Choice Data

Xuan Liu†   Fang Yang‡   Zongwu Cai§

Abstract

We test whether relative risk aversion varies with wealth using the Panel Study of Income Dynamics data. Our analytical results indicate that: (1) for each household, there are two channels through which the risky share responds to wealth fluctuations, the income channel and the habit channel; (2) across households, there are heterogeneous responses through the habit channel; and (3) two potential mis-identification problems arise when both heterogeneous responses through the habit channel and the responses through the income channel are ignored. Our empirical findings show strong evidence of relative risk aversion varying with wealth after correcting two mis-identification problems.

Keywords: Time-varying relative risk aversion; Habit formation preference; Micro data; Labor income; Portfolio choice.

JEL classification: E21; D91; G11.

*We are grateful to John Bishop, Jeffrey R. Campbell, Richard Ericson, Haiyong Liu, Jonathan Lee, Ivan Paya, Philip Rothman, Nicholas G. Rupp, John Seater, Martin Uribe, and seminar participants at the Fall 2012 Midwest Macroeconomics Meeting, the 2013 Annual Conference of the Canadian Economics Association, the 83rd Annual Meeting of Southern Economic Association, and the AEA 2014 Annual Meeting for helpful comments and discussions. We thank Markus Brunnermeier and Stefan Nagel for sharing their data and codes with us. Cai’s research was supported, in part, by the National Nature Science Foundation of China grants #71131008 (Key Project) and #70871003.

†Department of Economics, East Carolina University, Greenville, NC 27858; Email: liux@ecu.edu.
‡Department of Economics, Louisiana State University, Baton Rouge, LA 70803; Email: fyang@lsu.edu.
§Department of Economics, University of Kansas, Lawrence, KS 66045 and The Wang Yanan Institute for Studies in Economics, Xiamen University, Fujian 361005, China; Email: caiz@ku.edu.
1 Introduction

The assumption that agent’s relative risk aversion decreases with wealth is appealing because it provides an important mechanism that helps explain numerous economic phenomena. One popular way of generating time-varying relative risk aversion (hereafter TVRRA) with wealth is to assume habit formation preferences. Macroeconomic models with habit formation preferences have been used to explain a variety of stylized macroeconomic facts that are hard to explain using theoretical models with standard constant relative risk aversion preferences. These facts include the research works: Constantinides (1990), Jermann (1998), Campbell and Cochrane (1999), Bolderin et al. (2001), Otrok et al. (2002), and others for the equity premium, Bolderin et al. (2001) for the excess sensitivity of consumption to income, Shore and White (2002) for the equity home bias, Fuhrer (2000), Uribe (2002), Christiano et al. (2005) for the hump-shaped response of aggregate variables to monetary shocks, and Ravn et al. (2006) for the countercyclical markups. However, despite the mounting literature that uses habit formation preferences, thus automatically embodying a TVRRA assumption, there are only a few papers that test the empirical relevancy of TVRRA with micro-data.

To answer this empirical relevancy question, we first derive theoretical predictions of TVRRA on the relation between risky shares and wealth and then test these predictions using the data from the Panel Study of Income Dynamics (PSID). To derive the theoretical predictions between risky shares and wealth, we build a discrete-time portfolio choice model with time-varying external habit and time-varying labor income.\(^1\) Our emphasis on time-varying labor income is motivated by two empirical facts of the PSID data. The first fact is that the majority of households in the PSID data receive labor income and the second one is that a large portion of households in the PSID data experience large income shocks. For example, about 40% of the households in the sample received income below 30% of their average income over time.\(^2\) Our model with time-varying labor income captures these two empirical observations in the data. More importantly, our model modifies the existing theoretical predictions about the relation between risky shares and wealth in a non-trivial way, which will be discussed below in detail.

\(^1\)We generate TVRRA by assuming habit. Thus, we test the theoretical predictions of TVRRA by examining how risky shares respond to wealth fluctuations through the habit channel. Here the habit channel means the response of risky shares to wealth simply because of the existing of habit. We provide a mathematical presentation of the habit channel in Section 2.2.1.

\(^2\)Section 4.1.1 provides more details.
Our first contribution is to derive a theoretical relation between risky shares and wealth. We establish the theoretical predictions of TVRRA on the relation between risky shares and wealth, which are different from the existing prediction which argues that, when it becomes richer, the household will increase its risky share if the household has decreasing relative risk aversion in wealth; see Brunnermeier and Nagel (2008). Instead, our analytical solution changes such a conventional prediction in three dimensions.

First, our closed-form solution suggests that for each household its risky share responds to wealth fluctuations through two channels: the habit channel and the income channel. When the household does not experience large negative income shocks, the risky share, as wealth accumulates, will increase through the habit channel and decrease through the income channel.\(^3\) Thus, a mis-identification problem may arise when the response through both the habit channel and the income channel is ascribed to the response through the habit channel alone. We call this an internal mis-identification problem.

The second bias arises due to the heterogeneity in households’ income shocks. Specifically, households with large income drops are likely to decrease their risky shares responding to wealth accumulations through the habit channel, while households without large negative income shocks will increase their risky shares through that channel when they become richer. Thus, households who have decreasing relative risk aversion in wealth may adjust their risky shares to wealth fluctuations in opposite ways in the presence of heterogenous income shocks. As a result, an external mis-identification problem may arise when estimating over samples in which heterogenous households are pooled together.

The changes in the first two dimensions hold when the external habit do not substantially deviate from its mean. The change we have made in the last dimension is about impact of time-varying habit on the conventional prediction. Essentially, our theoretical solution shows that when external habit are far away from its mean, the conventional prediction breaks down even if the labor income does not present. In this case, a household with habit formation preferences will not increase its risky share when it becomes richer, a prediction which is opposite to the conventional prediction. This change is important because it sheds light on the correct inference that one can get from ones empirical work.

Our second contribution is the empirical analysis. We show strong evidence that TVRRA is in line with the theoretical predictions. To facilitate the discussion, we define three different

\(^3\)We show this point analytically in Section 2.2.1.
forms of TVRRA implications (hereafter TVRRAI): the strong form, the semi-strong form, and the weak form.\(^4\) If the portfolio choice model with habit considers neither the aforementioned two channels for each household, nor the aforementioned heterogeneous responses through the habit channel across households, we label the key theoretical implication(s) from such a model as the strong form of TVRRAI. The strong form implies that households whose preferences could be represented by habit formation will, independent of their income flows, increase their risky shares when their wealth increases, as discussed in Brunnermeier and Nagel (2008). If the portfolio choice model with habit considers the two channels but ignores the heterogeneity, we label the key theoretical implication(s) from such a model as the semi-strong form of TVRRAI. The semi-strong form implies that after controlling for the response through the income channel, the response through the habit channel should be positive. At last, if the portfolio choice model with habit considers both the two channels and the heterogeneity, we label the key theoretical implication(s) from such a model as the weak form of TVRRAI. The weak-form implies that after controlling for the response through the income channel and the impact of large negative income shocks, the response through the habit channel in the group in which households experienced large negative income shocks should be lower than that in the other group in which households did not experience large negative income shocks.\(^5\)

We empirically test the semi-strong form and the weak form of TVRRAI and compare the results with the strong form tested in Brunnermeier and Nagel (2008). We find an evidence of the weak-form of TVRRAI and no evidence of the semi-strong form of TVRRAI. First, in the semi-strong form of TVRRAI, if the identification scheme builds on a model that does consider the two channels but ignores the heterogeneity so that the test corrects the internal but not the external mis-identification problem, our estimates are statistically insignificant. This contrasts to Brunnermeier and Nagel (2008), who test the strong-form of TVRRAI and find significant negative responses. This comparison is in line with our theory, which states that controlling for the response through the income channel will increase the estimated response through the habit channel.\(^6\) Second, in the weak form of TVRRAI, if

\(^4\)When a model imposes less restrictions, we say the derived theoretical implication is stronger.

\(^5\)Note that in the weak-form test, we do not use the sign of response of risk shares to wealth to make judgment about whether relative risk aversion is decreasing in wealth. The main justification behind our practice is our theoretical result that time-varying habit alone may break down the conventional prediction as we have discussed in the previous paragraph.

\(^6\)We show this point analytically in Section 2.2.1.
the identification scheme builds on a model that considers both the two channels and the heterogeneity so that the test corrects both the internal and the external mis-identification problems, our estimates are both economically and statistically significant. We consider our empirical results as strong and clear evidence of TVRRA. Furthermore, our empirical results highlight the importance of isolating the impacts of time-varying labor income in carrying out empirical tests of time-varying relative risk aversion.

Our paper is related to several strands of the existing literature. First, our paper contributes to the literature about the impact of wealth on households’ portfolio choices. Existing theoretical models with habit formation that abstract from labor income imply a positive relation between wealth and risky shares; see, for example, Constantinides (1990) and Campbell and Cochrane (1999), and the references therein. Here we show analytically how labor income affects such a relation. From the empirical study perspective, evidence is mixed in the literature. For example, Cappelletti (2012) uses Italian data and finds that, after controlling for the decision to enter and leave the risky asset market, wealth fluctuations do help to explain changes in portfolio allocations. Brunnermeier and Nagel (2008) find a negative relation between risky shares and wealth in the data. Calvet et al. (2009) estimate the Brunnermeier-Nagel regression on Swedish data and find a positive relation after controlling for inertia. Here we show that estimates which ignore the two aforementioned mis-identification problems are likely to be biased down as is predicted in our theory. Putting together, by carefully controlling for the impact of labor income on the relation between risky shares and wealth, we provide a mechanism that is able to reconcile the seeming conflict between the existing theoretical predictions of TVRRA from a model with habit formation preferences and the existing empirical findings.

Second, our paper is related to the existing studies that test key theoretical predictions implied by habit using micro-data, which find mixed evidence of habit formation preferences. For example, Dynan (2000) rejects habit preference using US consumption data and Chiappori and Paiella (2011) reject habit preference using Italian data. On the contrary, Ravina

7Lax (2000) uses habit formation to explain decreasing risky investment over the life cycle. Campbell and Viceira (2002), Section 6.1.3 shows analytically how substance level affects portfolio in a simple model with constant income.

8It is worth mentioning that our mechanism is one of many possible ones that may be able to reconcile the seeming conflict. For example, one mechanism could be to control for the impact of inertia in portfolio adjustments as proposed in Calvet et al. (2009). They estimate the Brunnermeier-Nagel regression on their Swedish data set, with which they can control for inertia, and they find a positive relation when they estimate the regression by instrumental variables.
(2007) provides evidence of habit persistence in household consumption choices using panel data on U.S. credit-card account holders. Carrasco et al. (2005) estimate the intra-temporal marginal rate of substitution using Spanish consumption panel data and find strong support of habit.

Finally, our paper is also related to the literature on how income affects households’ portfolio choices. For example, Wachter and Yogo (2010) show in a life-cycle model that risky shares fall in normalized cash-on-hand (which corresponds to wealth in our paper) and rises in permanent income even if households have decreasing relative risk aversion in wealth. Our results instead indicate that the impact of temporary income also matters in terms of theoretical predictions of TVRRA on the relation between risky shares and wealth. First of all, our results show that controlling for the impact through the income channel may help explain the negative link found in Brunnermeier and Nagel (2008). Second, further controlling for the heterogeneous responses through the habit channel across households provides us evidence of TVRRA.

The rest of the paper is organized as follows. Section 2 presents the model and provides testable implications. Section 3 briefly describes the data, variables, and the sample selection. Section 4 is devoted to reporting the empirical results on both the weak form of TVRRAI and the semi-strong Form of TVRRAI. Finally, Section 5 concludes the paper. The mathematical proofs are given in the appendix.

2 Model, Solution, Biases and Inference, and Testable Implications

In this section, we present the benchmark model, derive the analytic solution to risky share, discuss the importance of time-varying income and time-varying habit, and derive testable implications of TVRRA. The theoretical model is a highly stylized portfolio choice model with a time-varying labor income and time-varying external habit. We consider the model for several reasons. First, the model delivers clear testable predictions of TVRRA on how risky shares respond to wealth fluctuations. Second, our model captures the realistic feature that the majority of the US households do receive time-varying labor income. Third, the majority of macroeconomics models, if they assume habit formation preferences, contain these two elements.
2.1 The Benchmark Model

In this model, a household carries wealth, W_t, from the last period, and receives labor income, Y_t, in the current period. Note that different from the model in Brunnermeier and Nagel (2008), our model assumes that the household receives time-varying labor income and time-varying habit. The household chooses consumption C_t and the share of post-consumption wealth $W_t + Y_t - C_t$ invested in the risky asset, α_t, to maximize

$$\max_{\{C_t, \alpha_t\}_{t=0}^\infty} \mathbb{E}[U(C_t, X_t, \delta, \gamma)] \quad \text{with} \quad U(C, X, \delta, \gamma) = \sum_{t=0}^\infty \delta^t \frac{(C - X)^{1-\gamma}}{1 - \gamma},$$

where \mathbb{E} denotes the unconditional expectation operator, δ denotes the subjective discount factor, and X_t denotes the external habit. We choose a simple form that enables us to generate time-varying relative risk aversion implications on how risky shares respond to wealth fluctuations. The steady state of X_t is given by X. Alternatively, X can be interpreted as a constant subsistence level or a consumption commitment as in Chetty and Szeidl (2007).

In order to obtain the analytical solution, we make the following assumptions on labor income and habit, respectively

$$(Y_{t+1} - Y) = \kappa (Y_t - Y), \quad (2.1)$$
$$(X_{t+1} - X) = \eta (X_t - X), \quad (2.2)$$

where Y denotes the steady state of labor income, X denotes the steady state of external habit, and both $|\kappa| < 1$ and $|\eta| < 1$ are parameters. Our specification given in (2.1) and (2.2) modifies the standard assumption that both income and habit follow an AR(1) process. Such a process enables us, when there is no uncertainty in the income and external habit processes, to derive a close-form solution, which will deliver clear theoretical predictions.

The household can invest in two securities: a risky asset with return R_t and a risk-free asset with return R_f. As a result, the household’s wealth at the beginning of period $t + 1$ is given by

$$W_{t+1} = (1 + R_{p,t+1}) (W_t + Y_t - C_t),$$

where $R_{p,t+1} = \alpha_t (R_t - R_f) + R_f$ denotes the return to the household’s wealth portfolio.

It is not straightforward to derive the analytical solution to the risky share in our model. The key idea behind the strategy to derive the analytical solution is as follows: transform the original model into one which has an analytical solution; and back up the solution to
the risky share in the original model since both the original model and the transformed model should have the same amount of wealth invested in the risky asset. To successfully implement this strategy, we need to impose additional restrictions such as equations (2.1) and (2.2). With these additional restrictions, we derive the analytical solution to the risky share in our benchmark model. The details are in the appendix 6.1.

The solution to the risky share is given by:

$$
\alpha_t^* = \left[1 - \frac{X - Y}{(W_t - C_t + Y_t + \frac{(Y_t - Y) - (X_t - X)}{Z + R_f}) R_f} \right] \left[1 + \frac{(Y_t - Y) - (X_t - X)}{(W_t - C_t + Y_t) (Z + R_f)} \right].
$$

(2.3)

where Z is defined as $Z = (\frac{1}{\kappa} - 1)(1 + R_f)$. Equation (2.3) provides an analytical solution that enables us to discuss how the risky share responds to post consumption wealth, how time-varying labor income affects the response, and how time-varying habit affect the inference from the sign of the response. It is worth mentioning that, if we set $Y_t = Y = 0$ and $X_t = X$, the solution to the risky share, α_t, is simplified to

$$
\alpha_t^* = \left[1 - \frac{X}{(W_t - C_t) R_f} \right] \approx 1 - \frac{X}{(W_t - C_t) R_f},
$$

(2.4)

which is the same as that in Brunnermeier and Nagel (2008). Therefore, our model covers the model in Brunnermeier and Nagel (2008) as a special case.

2.2 Identification and Inference

In this section, we discuss two issues. First, we show that estimates of habit may be biased down if time varying labor income is ignored. In particular, those estimates are subject to the so-called mis-identification problems, described below in Section 2.2.1 and Section 2.2.2. In discussing mis-identification problems, we impose that external habit is constant. Second, we show how time-varying habit may affect the inference from the sign of the estimates in Section 2.2.3. In discussing this inference issue, we assume that labor income is absent.

2.2.1 Internal Mis-identification

For each household, its risky share responds to its wealth accumulation through two channels, the habit channel and the income channel.\(^9\) To see this, we set $Y_t \equiv Y$ (not that we have

\(^9\)In this section, we discuss a mis-identification problem that will arise if the income channel is ignored. To simplify the discussion, we set $X_t \equiv X$ in this section and Section 2.2.2.
just imposed $X_t \equiv X$). In this case, equation (2.3) reduces to

$$\alpha_t^* = \left[1 - \frac{X}{(W_t - C_t + Y) R_f}\right] + \frac{Y}{(W_t - C_t + Y) R_f}.$$

(2.5)

The sign “+” (“-”) means that the risky share will increase (decrease) when the post-consumption wealth increases. It is clear that α_t^* respond to the change of $W_t - C_t$ in two channels: the habit channel (“+”) and the income channel (“-”). However, even though adding a constant stream of labor income in case of a constant habit is mathematically isomorphic (in terms of the asset allocation implications) to reducing the habit by a constant, households will have constant relative risk aversion without habit in this model. As a result, ignoring the impact of labor income will bias down the estimates that are used to make judgment about the time-varying relative risk aversion implications.

A mis-identification problem arises when the response through two channels is ascribed as the response through the habit channel. We label this mis-identification problem as the internal mis-identification problem. To see this, it is easy to show from (2.5) that the following core regression equation holds true

$$\Delta \alpha_t^* = (\rho - \theta Y) \Delta w_t + \varepsilon_t,$$

(2.6)

where Δ denotes the first-order difference, $\rho = \frac{X W}{(W + Y)^2 R_f}$ and $\theta = \frac{W}{(W + Y)^2 R_f}$, where W denotes the average of wealth, $w_t \equiv \log (W_t - C_t)$, and ε_t follows identically independent normal distribution and is uncorrelated with Δw_t. Note that ρ is the parameter that catches the response of risky shares to wealth fluctuations through the habit channel. θ is the parameter that catches the response of risky shares to wealth fluctuations through the income channel. The detailed derivations of (2.6) are given in Appendix 6.2.

If we remove labor income from the previous model, thus ignoring the impact of income on the relation, the core regression equation and the corresponding ordinary least squares (hereafter OLS) estimate are, respectively, given by

$$\Delta \alpha_t^* = \rho \Delta w_t + \varepsilon_t,$$

and

$$\hat{\rho} = \left[\left(\Delta w_t\right)' (\Delta w_t)\right]^{-1} \left(\Delta w_t\right)' (\Delta \alpha_t^*).$$

However, if (2.6) is correctly specified, it follows straightforwardly based on the theory for

10One thing worth mentioning is, even though α_t^* is decreasing in post consumption wealth through the second channel, $\partial \alpha_t^*/\partial Y$ is still positive: the higher labor income the household has, the larger the α^* will be.
OLS estimate that

\[\mathbb{E}(\hat{\rho}) = \left[(\Delta w_t)'(\Delta w_t) \right]^{-1} (\Delta w_t)'(\rho - \theta Y) \Delta w_t = \rho - \theta Y \leq \rho, \]

which means that \(\hat{\rho} \) is under-estimated. Thus, a mis-identification problem arises when the estimate of \((\rho - \theta Y)\) is ascribed as the estimate of \(\rho\). Moreover, if labor income has a strong impact, i.e., \(\theta Y\) is large, \(\hat{\rho}\) may be close to zero or negative even though the true value of \(\rho\) is still positive. Hence, the fact that \(\hat{\rho}\) is close to zero or negative does not necessarily imply that micro-data does not support the TVRRA assumption, because it does not necessarily mean that \(\rho\) is negative or zero. In other words, ignoring the response through the income channel may cause \(\rho\) to be under-estimated.

2.2.2 External Mis-identification: Heterogeneity

Households with different income shocks may be heterogenous in terms of the responses of their risky shares to wealth fluctuations through the habit channel. When households do not have large negative income shocks, they increase their risky shares as the optimal response to wealth accumulations through the habit channel. However, when households have large negative income shocks, they may decrease their risky shares as the optimal response to wealth accumulations through the habit channel. To see the heterogenous responses, note that when \(Y\) is time-varying, the response of \(\alpha^*_t\) through the habit channel is given by

\[
\left[1 - \frac{X}{(W_t - C_t + Y_t + \frac{Y_t - Y}{Z + R_f}) R_f} \right] \left[1 + \frac{Y_t - Y}{(W_t - C_t + Y_t)(Z + R_f)} \right],
\]

which shows that if \(Y_t\) is far below \(Y\), it is likely that the sum in the second parenthesis becomes negative.\(^{11}\) This implies that the response through the habit channel can be negative. In this case, the conventional wisdom that risky shares are increasing in wealth through the habit channel, may break down in the presence of large negative income shocks.

Thus, there could be two different groups of households. Households in the first group have large negative income shocks and respond negatively, in terms of adjusting their risky shares, to wealth accumulations through the habit channel. Households in the second group do not have large negative income shocks and they respond positively. If we run regressions with a sample that pools the two heterogenous groups together, the associated estimate is

\(^{11}\)Note that we have imposed \(X_t \equiv X\).
mis-identified and it is likely to be insignificant. We label this mis-identification problem as the external mis-identification problem.

2.2.3 Inference and Time-varying Habit

In this section, we discuss how time-varying habit will affect the conventional prediction about the relationship between relative risk aversion and the sign of the response of risky shares to wealth. To focus on the point, we impose that $Y_t \equiv Y \equiv 0$. In this case, equation (2.3) reduces to

$$\alpha^*_t = \left[1 - \frac{X}{W_t - C_t - \frac{X_t - X}{Z + R_f}}\right] \left[1 - \frac{X_t - X}{(W_t - C_t)(Z + R_f)}\right]. \tag{2.9}$$

Clearly, the necessary and sufficient condition for the last term on the right hand side of (2.9), $\left[1 - \frac{X_t - X}{(W_t - C_t)(Z + R_f)}\right]$, to be positive, is $(X_t - X) < (W_t - C_t)(Z + R_f)$. That means that when habit do not dramatically deviate above from the mean, we have the conventional wisdom that households with habit formation preferences will increase their risky shares when they accumulate wealth. This is the same theoretical prediction as in Brunnermeier and Nagel (2008) which assume time-invariant habit. In other words, allowing time-varying habit does not fundamentally change the positive prediction in the literature if habit moves closely around the mean.

However, if X_t is far above X, it becomes possible that the response of risky shares to wealth accumulations through the habit channel becomes negative. This happens even if households have not suffered from large negative income shocks. In real life, it seems intuitive that habit will have a larger change over a longer period of time. In this case, it seems reasonable to argue that the chance that the response becomes negative will increase over longer time horizons. This possibility is important. It implies that we cannot, unless we have controlled the impact of time-varying habit, make a judgment about whether relative risk aversion is decreasing in wealth or not from the sign of the response of risky shares to wealth.

2.3 Testable Predictions

We have shown that (1) incorporating time-varying labor income matters in terms of identification and incorporating time-varying habit matters in terms of inference. We now derive empirical tests of the theoretical predictions of TVRRA by controlling the response through
the income channel for each household and/or the heterogeneous responses through the habit channel across households, i.e., testing the weak form and the semi-strong form of TVRRAI.

2.3.1 Weak Form of TVRRAI

Given the aforementioned internal and external mis-identification problems, we design the following test to examine the weak form of TVRRAI. We divide households in each subsample into two groups: households in the first group, \(i = 1 \), experienced large negative income shocks and households in the second group, \(i = 2 \), did not experience large negative income shocks. Second, for each group, we obtain an estimate of \(\rho_i, i = 1, 2 \). Third, our testable hypothesis for habit formation preference is,

\[
H_0 : \rho_2 - \rho_1 > 0. \tag{2.10}
\]

Instead of imposing \(\rho_2 > \rho_1 > 0 \), we test the difference of \(\rho \)'s across groups in each subsample. The main reason for not testing \(\rho_i > 0 \) is as follows. As we have discussed in Section 2.2.3, when \(X_t \) dramatically deviates from its mean, the response of risky shares to wealth fluctuations through the habit channel would be negative even if households have not experienced large negative income shocks. When this happens, we cannot, unless we have controlled the impact of time-varying habit, make a judgment about whether relative risk aversion is decreasing in wealth or not from the sign of either \(\rho_1 \) or \(\rho_2 \). In our empirical analysis in Section 4 later, the test of the weak form of TVRRAI uses the \(k = 5 \) subsample.\(^{12}\) During the five-year interval between any two observations for each household, it is possible that habit has changed a lot. Because of this consideration of large changes of habit over 5 years, we test the inequality given in (2.10).\(^{13}\)

2.3.2 Semi-strong Form of TVRRAI

Given the internal mis-identification problem, we run regression to obtain the estimates of the response through the habit channel, \(\rho \). We consider the following testable hypothesis to test the semi-strong form of TVRRAI

\[
H_0 : \rho > 0. \tag{2.11}
\]

\(^{12}\)The notation of \(k = 5 \) means that any two observations for the same household in the sample are 5 years apart. We explain in detail in Section 3.

\(^{13}\)Nevertheless, our testable hypothesis is still reasonable in this case as long as habit across households changes roughly in the same fashion over time.
Mathematically, without considering the impact of large negative income shocks (or as in the case of $Y_t \equiv Y$), our analysis in Section 2.2.1 indicates that $X > 0$ implies that $\rho > 0$. That is to say, a positive estimate of ρ suggests that habit formation preferences are in line with portfolio choice data. This is the same as in Brunnermeier and Nagel (2008). Intuitively, an increase in wealth, for example, should lead to a temporary decrease in relative risk aversion and an increase of the risky share if households have habit formation preferences.

3 Variables, Data, and Sample Selection

Here we give a brief introduction about variables, data, and sampling. The definition of each variable is quite standard. In particular, risk-free assets are defined as the sum of cash-like assets and holdings of bonds. We consider two different measures of risk share. In the first measurement, liquid assets are given by the sum of risk-free assets and the holdings of stocks and mutual funds. Subtracting other liabilities from liquid assets yields liquid wealth. As a result, risky assets is liquid wealth minus risk-free assets, and risky share is the holdings of risky assets divided by liquid wealth. The second measurement uses financial wealth, which is the sum of liquid wealth, equity in a private business, and home equity. Accordingly, risky assets include the holdings of stocks and mutual funds, equity in a private business, and home equity, and risky share is the holdings of risky assets divided by financial wealth. Lastly, income in our paper is represented by labor income of households.

The PSID data set contains many household characteristics annually after 1997 and households’ asset holdings in years 1984, 1989, 1994, 1999, 2001, and 2003. Thus, time-series data about asset holdings are either 2-year apart or 5-year apart. Hence, we divide the data into two subsamples: the 1984-1999 ($k = 5$) subsample and the 1999-2003 ($k = 2$) subsample. We select households who hold at least $10,000 liquid wealth or at least $10,000 financial wealth in the last period, $t - k$.\footnote{First, as in Brunnermeier and Nagel (2008), for risky asset shares to be meaningful, we also require a certain minimum level of wealth. In practice we follow Brunnermeier and Nagel (2008) by setting this $10,000 wealth bound. Second, our major results are not sensitive in the sense that they still hold when we lower the bound to $5,000.} In addition, we require that the martial status of the family unit head remained unchanged from $t - k$ to t and that no assets were moved in or out as a consequence of a family member moving into or out of family unit. Table 1 provides some summary statistics of three key variables, liquid wealth, financial wealth, and income.
4 Empirical Analysis

In this section, we present the empirical results. We first investigate our benchmark model with time-varying labor income that considers both the habit channel and the income channel, and the heterogeneity (the weak form of TVRRAI). We then explore the model that considers both channels but with constant income (semi-strong form of TVRRAI).

4.1 Weak Form of TVRRAI

4.1.1 Methodology

To test our hypothesis, the inequality in (2.10), we have to compare households’ current income to their long run average in order to divide households in each subsample into two groups. We do not have the data to calculate the averages in the 1999-2003 ($k = 2$) subsample.\(^{15}\) As a result, we only test the weak form of TVRRAI with the 1984-1999 ($k = 5$) subsample by dividing the households in that subsample into two groups. In the first group, $i = 1$, households’ current income is below a threshold ratio of their time-series averages. The remaining households enter the second group, $i = 2$. In the benchmark exercise, we set the threshold ratio at 30%. To see how the threshold ratio has an impact on the results, we conduct a sensitivity analysis by changing the values for threshold ratio from 20% to 50% and the analysis results are displayed in Figure 1.

For each group, we estimate the following equation

$$
\Delta_k \alpha_{i,t,j} = \beta_i q_{t-k,j} + \gamma_i \Delta_k h_{i,t,j}^i + \rho_i \Delta_k w_{i,t,j}^i - \psi_i y_{t,j}^i \Delta_k (w_{i,t,j}^i) + \varepsilon_{i,t,j}, i = 1, 2.
$$

(4.1)

where $q_{t-k,j}^i$ is a vector of household characteristics and the fixed time effects for household j in the i-th group. For example, it includes a broad range of variables related to the life cycle, background, and financial situation of the household. The vector $\Delta_k h_{i,t,j}^i$ contains variables that capture major changes in household characteristic or asset ownership for the i-th group. For example, it includes: changes in family size, changes in the number of children, and sets of dummies for house ownership, business ownership, and nonzero labor income at t and $t - k$. The inclusion of these additional variables serves the purpose of controlling for some important econometric issues, such as life-cycle effects and preference shifters, and idiosyncratic versus aggregate wealth changes.

\(^{15}\)We leave the discussion with the 1999-2003 ($k = 2$) subsample and other available PSID data to our future research.
We set $y_t = \log(Y_t)$. We use labor income in our empirical analysis of both liquid risky shares and financial risky shares. Note that, labor income may not correspond to income in our portfolio choice model if wealth means liquid wealth. Since we do not have the data for the right choice of income in line with liquid wealth, our results associated with liquid risky shares should be interpreted with caution.

Finally, comparing to (10) in Brunnermeier and Nagel (2008), we introduce the term $y_{t,j}^i \Delta_k (w_{t,j}^i)$ in equation (4.1) in order to get the estimate of ρ. Since the additional term is the only difference between (4.1) and (10) in Brunnermeier and Nagel (2008), all econometric issues except the instruments that have been addressed in Brunnermeier and Nagel (2008) are handled in the same way.

4.1.2 Regression Results

We focus on reporting results on the response of risky shares to wealth fluctuations. The main results about the weak form of TVRRAI are presented in Tables 2 and 3. In Table 2, we report the first-stage TSLS estimates. In Table 3, we report two OLS estimates, OLS1 and OLS2, and the second stage TSLS estimate for both liquid risky shares and financial risky shares. The difference between OLS1 and OLS2 is that OLS2 includes “Asset composition controls” in the control variables. In particular, for the liquid asset share, asset composition controls include: the labor income/liquid wealth ratio interacted with age, the business wealth/liquid wealth ratio, and the housing wealth/liquid wealth ratio. For the financial asset share, asset composition controls consist only of the labor income/financial wealth ratio interacted with age. It immediately follows that a big portion of households in our subsample suffered large negative income shocks. According to Table 2, 573 out of 1362 households in the 1984-1999 subsample, 42 percent, had the current income below 30% of their time-average income.

From Table 3, we see that with the OLS estimates, the responses of both financial and liquid risky shares to wealth fluctuations in the first group are smaller than the corresponding responses in the second group and the differences are, in general, statistically significant. For example, the difference between the responses of liquid risky shares, ρ’s, across groups is 0.144 percentage points if we use the OLS1 estimate. This finding provides some evidence of TVRRA in the households’ portfolio choice data. Note that the OLS2 estimate associated with liquid risky shares is not statistically different from zero. We do not interpret this

16For results about the stock market participation, please see Brunnermeier and Nagel (2008).
insignificant result as evidence against habit formation preferences. The reason is that our practice of using labor income to denote the income from sources other than liquid wealth seems to be problematic. This is because the income from sources other than liquid wealth not only includes labor income, but also includes the income generated from owning equity in a private business and from owning home equity. So, the use of labor income to denote the income from sources other than liquid wealth clearly ignores the income generated from owning equity in a private business and from owning home equity.

Strong evidence comes from the two OLS estimates associated with financial risky shares. Both estimates associated with the bottom group are statistically significant. They are economically significant as well: one is -0.967 percentage points and the other is -0.681 percentage points. According to our model, if we use financial risky shares, y_t should denote the income coming from sources other than financial assets. It seems reasonably to argue that labor income is the right income to use. Since the relation between financial risky shares and labor income in our empirical results is in line with the theoretical model, we believe that two OLS estimates, both economically significant and statistically significant, provide some evidence of TVRRA in the PSID data.

Nevertheless, it is well known that PSID data, micro-data from surveys, about wealth and risky shares contain measurement errors and OLS estimates are thus inconsistent. To address such an issue, we do two-stage least squares regressions. The identification requirement is that the instruments, IVs, are (partially) correlated with $\Delta_k w_t$, but not the error terms. Brunnermeier and Nagel (2008) choose quantile dummies for income growth from $t - k$ to t (similar to Dynan (2000), in a different application), and inheritance receipts (as in Meer at al. (2003)) between $t - k$ and t as instruments. One reason is, as they argue, that these instruments are based upon survey questions that are different from those for the components of w_t. Hence, it is reasonable to assume that the elements of IV are uncorrelated with measurement errors. Even though the choice of those instruments does not reject that the instruments are uncorrelated with the regression residual, they are, in general, weak instruments when we run our regressions. For example, the Cragg-Donald Wald F statistics associated with the liquid risky shares and the financial asset shares in our TSLS regressions using the the first group data are 2.863 and 5.825, respectively. In both cases, we cannot

\footnote{The OLS estimates associated with the top group are not significantly different from zero. Thus, we focus on the estimates associated with the bottom group in which households suffered large negative income shocks.}
reject the hypothesis of weak instruments at 25%. In the TSLS regressions using the the second group data, the Cragg-Donald Wald F statistics associated with the liquid risky shares and the financial risky shares are 10.871 and 6.439, respectively. We can only reject the null hypothesis of weak instruments at 20% in the liquid risky shares case but not in the financial risky shares case. Unfortunately, the latter case is clearly the relevant case because the relation between financial risky shares and labor income is in line with the theoretical model as we have discussed.

To deal with the weak instrument issue, we choose different instruments. In particular, our instrument, IV, is the difference between the growth rate of the household’s labor income and the growth rate of the household’s liquid assets. For the formal definition of the instrument, please see the note under Table 2. The results in the table show that the instrument has a significant partial correlation with changes in log liquid wealth and changes in log financial wealth. The partial R^2 of the instrument is close to 1, which suggests that the instrument explains a large fraction of variation in wealth changes. The instrument is highly significant, with p-values smaller than 0.001 for each of the specifications. To see this, note that F statistics are larger than the rule of thumb of ten suggested by Staiger and Stock (1997).

The second stage TSLS regression results are reported in Table 3. The difference between the response of liquid risky shares to wealth fluctuations in the first group is 1.369 percentage points smaller than the corresponding response in the second group. The difference associated with financial risky shares is even larger, 6.341 percentage points. Both differences are statistically significant and economically significant. Note that we have only one endogenous regressor and one instrument in any of our regression specifications. Our specifications are exactly identified and the p-values associated with the over-identification tests are always almost zero. In addition, we observe F statistics above Stock and Yogo weak identification critical values, rejecting the hypothesis that the IV is weak. In particular, the Cragg-Donald Wald F statistics associated with the first group data are substantially larger than the 10% Stock-Yogo weak ID test critical value; and those associated with the second group data are substantially larger than the 15% Stock-Yogo weak ID test critical value. Given that our instrument is strong and the differences are both statistically significant and economically significant, we argue that, overall, the TSLS results do provide evidence of TVRRA since they are in line with the theoretical predictions about relative risk aversion of a portfolio.
choice model with habit.

As addressed in Brunnermeier and Nagel (2008), it is to be expected that the TSLS estimator will lose precision compared with the OLS estimator. It is not clear that the TSLS estimator will be closer to the true parameter in a mean-squared error sense. In realizing this, we argue that if both OLS estimates and the TSLS estimate show the difference as predicted by the portfolio choice model with habit, it is then reasonable to argue that there is evidence of TVRRA in the PSID data. Our results associated with the financial risky shares could thus be viewed as evidence of TVRRA. Still, note that the use of labor income when wealth refers to liquid wealth may be an issue as we have discussed before.

Finally, we carry out sensitivity analysis. To do so, we change the 30% threshold value from 20% to 50% and we obtain the similar evidence of TVRRA (Figure 1). In each panel, the horizontal axis represents the threshold ratio that is used to divide the subsample into two groups. In our empirical exercise, all ρ_2's are not significantly different from zero. Thus, we set them to be zero and the vertical axis in Figure 1 represents $-\rho_1$. In the figure, OLS1 denotes the the value of ρ_1 associated with our first OLS estimates in our tables; OLS2 denotes the the value of ρ_1 associated with our second OLS estimates in our tables; and TSLS denotes the the value of ρ_1 associated with our TSLS estimates in our tables. The results in panels (a)-(c) hold at the 10% significant confidence interval and the results in panels (b)-(d) hold at the 5% significant confidence interval.

In summary, our hypothesis essentially implies that controlling for the response through the income channel for each household and the heterogeneous responses through the habit channel across households will help generate a positive increase of ρ from the $i = 1$ group to the $i = 2$ group. Since our empirical results confirm such a hypothesis, we argue, in terms of the testable theoretical predictions, that the weak form of habit formation preferences is supported by the PSID data.

4.2 Semi-strong Form of TVRRAI

To test the prediction, the inequality in (2.11), we estimate the following equation for both subsamples

$$
\Delta_k \alpha_{t,j} = \beta_q t_{-k,j} + \gamma \Delta_k h_{t,j} + \rho \Delta_k w_{t,j} - \partial y_{t,j} \Delta_k w_{t,j} + \varepsilon_{t,j},
$$

(4.2)

We deal with the instruments in the same way as we have done in the discussion of the weak form of TVRRAI. We use labor income in our empirical analysis of both liquid risky shares
and financial risky shares. Since we do not have to calculate the averages in testing the semi-strong form, we can use both the 1984-1999 subsample and the 1999-2003 subsample.

The main results are summarized in Table 4. In general, we find no response of risky shares to wealth fluctuations. For example, the liquid risky share decreases with liquid wealth in the 1984-1999 subsample and has no response in the 1999-2003 subsample. The financial risky share presents no response to financial wealth in both subsamples, except the TSLS estimate associated with the 1984-1999 subsample. In contrast, Brunnermeier and Nagel (2008) find generally negative response of the financial risky share to the wealth fluctuations. To facilitate comparison, we present the test results about the strong form of TVRRAI in Table 5 in which we replicate those in Tables 4 and 5 in Brunnermeier and Nagel (2008). In particular, we estimate the following equation for both subsamples

$$\Delta_k \alpha_{t,j} = \beta q_{t-k,j} + \gamma \Delta_k h_{t,j} + \rho \Delta_k w_{t,j} + \varepsilon_{t,j},$$

Note that our TSLS estimates are quite different from their TSLS estimates. The main reason is that we use a different instrumental variable from theirs. We have discussed this point in detail above.

This comparison shows that controlling for the response through the income channel raises the estimate of ρ, confirming the implication of our theoretical model with constant labor income that omitting the impact of labor income channel biases downward the estimate of ρ.

5 Conclusion

In this paper, we introduce time-varying labor income, an empirically important element, into a portfolio choice model with external habit. The key theoretical contribution of our paper is that our analytical solution adds the following new insights to the literature: (1) risky shares respond to wealth fluctuations through two channels, habit channel and labor income channel, and an internal mis-identification problem arises if the labor income channel is ignored; (2) depending on whether they experience large negative income shocks or not, households respond differently through the habit channel, and an external mis-identification problem arises if the heterogeneous responses through the habit channel across households are ignored; and (3) if habit substantially deviates from its mean, a household whose relative risk aversion decreasing in wealth may reduce its risky share after it becomes richer.
Accordingly, we test the semi-strong form and the weak form of TVRRAI. Our empirical contribution is that we find evidence of the weak form of TVRRAI. Our positive evidence of the weak form of TVRRAI is clear evidence of TVRRA in the household level data. Our refined results provide some confidence with respect to the use of habit formation preferences in macro models. Even though our results reject the semi-strong form of TVRRAI, in line with the rejection of the strong form of TVRRAI in the literature, our acceptance of the weak form shows the importance of controlling for the internal and external mis-identification problems. In addition, our analysis shows some potential of bridging the gap between the success of macro models with habit and the previous negative evidence in micro data by using more realistic theoretical models to identify the estimation.

Some questions still remain open and they are addressed here. First, the effect of inertia on portfolio adjustments remains unchanged from those in Brunnermeier and Nagel (2008), which casts reasonable doubt on the soundness of TVRRA. Thus, the strong asset allocation inertia identified in Brunnermeier and Nagel (2008) remains an interesting and not well-understood phenomenon. Second, new data have been issued. It is of interest to check the robustness with additional data and this is on our future research agenda. Finally, the relation between risky shares and wealth in (2.3) is indeed highly nonlinear. Our estimates are based on linear regression models and they may be biased due to linear approximation. In a separate project, we will develop directly nonlinear/nonparametric estimates. By overcoming the bias associated with the linear estimates when the underlying relation is highly nonlinear, we will further explore what additional insights we can obtain about the time-varying relative risk aversion.
6 Appendix

6.1 The Derivation of Eq. (2.3)

In general, there are no analytical solutions to the risky share in this type of models. To obtain a close-form solution in our benchmark model, we take the following strategy. First, we impose additional restrictions such as equations (2.1) and (2.2). It is worth mentioning that even with these additional restrictions, it is not straightforward to derive the analytical solution. Second, we start with a simpler model, complicate the model one place at a time, and finally obtain our benchmark model. In particular, we consider 4 different models (with the last one being our benchmark model). Third, for each of these 4 models, we take the following steps to derive its analytical solution:

1. Define the original model.
2. Impose restrictions such as equations (2.1) and (2.2) whenever necessary.
3. Choose an investment strategy.
4. Write the law of motion of wealth with the investment strategy.
5. Define new auxiliary variables.
6. Rewrite the law of motion of wealth with newly defined auxiliary variables.
7. Re-define a transformed model with auxiliary variables in a such a way that the transformed model has an analytical solution.
8. Use the following relation to back out the solution to the risky share in the original model: the amount of money that is invested in the risky assets is equal to that invested in the risky assets in the transformed model.

6.1.1 Model I: Adding A Fixed Labor Income Flow

In this subsection, we introduce a constant labor income flow and constant external habit into the model proposed by Samuelson (1969). This original model is denoted as Model I.

1. Define the original model.

 - The household’s optimization problem becomes to choose C_t and the share of $W_t - C_t + Y$ invested in the risky asset, α_t^1, to maximize

 $$\max_{\{C_t, \alpha_t^1\}} \mathbb{E}\{U(C_t, X, \delta, \gamma)\} \quad \text{subject to} \quad W_{t+1} = (1 + R_{p,t+1}) (W_t - C_t + Y). \quad (6.1)$$

 where C denotes consumption, Y denote labor income, W denotes wealth, R_p denotes portfolio return rate, and X denotes external habit. In general, variables without the time subscript t denote their corresponding steady state values. The life-time utility function is defined as $U(C, X, \delta, \gamma) = \sum_{t=0}^{\infty} \delta^t \frac{(C-X)^{1-\gamma}}{1-\gamma}$.

20
2. Impose restrictions such as equations (2.1) and (2.2) whenever necessary.
 - No such restriction is necessary in this particular model.

3. Choose an investment strategy.
 - We divide the total household post-consumption wealth, \(W_t + Y - C_t \) into two parts: \(W_t + Y - C_t - (X - Y)/R_f \) and \((X - Y)/R_f \).
 - For the first part, the household invests a fraction \(\tilde{\alpha}_t^1 \) in the risky asset and the rest in the risk-free asset. The return to this (partial) wealth portfolio, \(\tilde{R}_{p,t+1}^1 = \tilde{\alpha}_t^1 (R_t - R_f) + R_f \).
 - The second part, the remaining \((X - Y)/R_f \), is 100% invested in the risk-free asset.

4. Write the law of motion of wealth with the investment strategy.
 - The law of motion of wealth is thus given by

 \[
 W_{t+1} = (1 + \tilde{R}_{p,t+1}^1) \left(W_t - C_t + Y - (X - Y)/R_f \right) + (1 + R_f)(X - Y)/R_f.
 \]

5. Define new auxiliary variables.
 - We define two new auxiliary variables, \(\tilde{W}_t^1 \) and \(\tilde{C}_t^1 \):

 \[
 \begin{align*}
 \tilde{W}_t^1 &= W_t - (X - Y) - (X - Y)/R_f, \\
 \tilde{C}_t^1 &= C_t - X.
 \end{align*}
 \]

6. Rewrite the law of motion of wealth with newly defined auxiliary variables.
 - We remove \((1 + R_f)(X - Y)/R_f \) in the old law of motion from the right-hand-side to the left hand side and obtain

 \[
 W_{t+1} - (1 + R_f)(X - Y)/R_f = \left(1 + \tilde{R}_{p,t+1}^1 \right) \left(W_t - C_t + Y - (X - Y)/R_f \right).
 \]
 - By definition, we have

 \[
 \tilde{W}_{t+1}^1 = W_{t+1} - (1 + R_f)(X - Y)/R_f,
 \]
 \[
 \tilde{W}_t^1 - \tilde{C}_t^1 = (W_t - C_t + Y - (X - Y)/R_f).
 \]
 - Thus, the law of motion of wealth can be re-written as

 \[
 \tilde{W}_{t+1}^1 = \left(1 + \tilde{R}_{p,t+1}^1 \right) \left(\tilde{W}_t^1 - \tilde{C}_t^1 \right).
 \]

7. Re-define a transformed model with auxiliary variables in a such a way that the transformed model has an analytical solution.
The model (Model I) defined in (6.1) can be transformed as
\[
\max_{\{\tilde{C}_t, \tilde{\alpha}_t\}_{t=0}^\infty} \mathbb{E}[U(\tilde{C}_t, 0, \delta, \gamma)] \quad \text{s.t.} \quad \tilde{W}_t = (1 + \tilde{R}_{p,t+1}) (\tilde{W}_{t-1} - \tilde{C}_{t-1}).
\]

This transformed model is identical to the one studied in Samuelson (1969), which has a closed form solution, \(\alpha^*, \text{Samuelson}\), under the condition that the expected returns and volatility are constant. In particular, \(\alpha^*, \text{Samuelson} \approx 1\).

Thus, the optimal share of the risky asset, \(\tilde{\alpha}_t^*\), to the above transformed optimization problem is given by
\[
\tilde{\alpha}_t^* = \alpha^*, \text{Samuelson} \approx 1.
\]

8. Use the following relation to back out the solution to the risky share in the original model: the amount of money that is invested in the risky assets is equal to that invested in the transformed model.

Since both Model I and its transformed one give the same answer to the amount of wealth invested in the risky asset, it holds true that
\[
\alpha_t^* (W_t - C_t + Y) = \tilde{\alpha}_t^* (W_t - C_t + Y - (X - Y)/R_f),
\]

The above equation implies that
\[
\alpha_t^* = \tilde{\alpha}_t^* \times \frac{[W_t - C_t + Y - (X - Y)/R_f]}{(W_t - C_t + Y)} \approx 1 - \frac{X - Y}{(W_t - C_t + Y) R_f}.
\]

Note that we have used \(\tilde{\alpha}_t^* \approx 1\).

6.1.2 Model II: Time-varying Habit

In this subsection, different from the previous section, we allow habit to be time-varying but set \(Y_t = 0\) in the benchmark model. For such a case, we define this original model as Model II.

1. Define the original model.

 - Household’s optimization problem is to maximize
 \[
 \max_{\{C_t, \alpha_t^2\}_{t=0}^\infty} \mathbb{E}[U(C_t, X_t, \delta, \gamma)] \quad \text{s.t.} \quad W_{t+1} = (1 + R_{p,t+1}) (W_t - C_t), \quad (6.2)
 \]
 where \(X_t\) is the time-varying habit.

2. Impose restrictions such as equations (2.1) and (2.2) whenever necessary.

 - We impose the following restrictions on habit
 \[
 (X_{t+1} - X) = \eta (X_t - X), \quad (6.3)
 \]

 - Define the original model.
where $|\eta| < 1$. This is the same as equation (2.2).

- Even though our specification might be restrictive, such a process enables us to derive the close-form solution.

3. Choose an investment strategy.

- We divide the total household post-consumption wealth, $W_t - C_t$, into two parts: $W_t - C_t - (X_t - X)/(Z + R_f)$ and $(X_t - X)/(Z + R_f)$, where $Z = (1 + R_f)/\eta - (1 + R_f)$.
- In the first part, the household invests a fraction $\tilde{\alpha}_t^2$ in the risky asset and the rest in the risk-free asset. The return to this (partial) wealth portfolio is $\tilde{R}^2_{p,t+1} = \tilde{\alpha}_t^2 (R_t - R_f) + R_f$.
- The second part, the remaining $(X_t - X)/(Z + R_f)$, is 100% invested in the risk-free asset.

4. Write the law of motion of wealth with the investment strategy.

- The law of motion of wealth is thus given by

$$W_{t+1} = \left(1 + \tilde{R}^2_{p,t+1}\right) \left(W_t - C_t - (X_t - X)/(Z + R_f)\right) + (1 + R_f)(X_t - X)/(Z + R_f),$$

$$= \left(1 + \tilde{R}^2_{p,t+1}\right) \left\{W_t - (X_t - X) - (X_t - X)/(Z + R_f) - [C_t - (X_t - X)]\right\}$$

$$+ (X_{t+1} - X) (Z + 1 + R_f)/(Z + R_f),$$

where the last step uses equation (6.3) and the definition of Z.

5. Define new auxiliary variables.

- We define two new auxiliary variables, \tilde{W}_t^2 and \tilde{C}_t^2:

$$\tilde{W}_t^2 = W_t - (X_t - X) - (X_t - X)/(Z + R_f),$$

$$\tilde{C}_t^2 = C_t - X_t + X.$$

6. Rewrite the law of motion of wealth with newly defined auxiliary variables.

- We remove $(X_{t+1} - X) (Z + 1 + R_f)/(Z + R_f)$ in the old law of motion from the right-hand-side to the left-hand-side and obtain

$$W_{t+1} - (X_{t+1} - X) (Z + 1 + R_f)/(Z + R_f),$$

$$= \left(1 + \tilde{R}^2_{p,t+1}\right) \left\{W_t - (X_t - X) - (X_t - X)/(Z + R_f) - [C_t - (X_t - X)]\right\}$$

- By definition, we have

$$\tilde{W}_{t+1} = W_{t+1} - (X_{t+1} - X) (Z + 1 + R_f)/(Z + R_f),$$

$$\tilde{W}_t^2 - \tilde{C}_t^2 = \left\{W_t - (X_t - X) - (X_t - X)/(Z + R_f) - [C_t - (X_t - X)]\right\}.$$
Thus, the law of motion of wealth can be re-written as

\[
\tilde{W}_{t+1}^2 = \left(1 + \tilde{R}_{p,t+1}^2\right) \left(\tilde{W}_t^2 - \tilde{C}_t^2\right).
\]

7. Re-define a transformed model with auxiliary variables in such a way that the transformed model has an analytical solution.

- By definition we have \(C_t - X_t = \tilde{C}_t^2 - X\). Thus, Model II defined in (6.2) can be rewritten as the following transformed model

\[
\max_{\{\tilde{C}_t^2, \alpha_t^2\} \in \mathbb{R}} \mathbb{E}[U(\tilde{C}_t^2, X, \delta, \gamma)] \quad \text{s.t.} \quad \tilde{W}_{t+1}^2 = \left(1 + \tilde{R}_{p,t+1}^2\right) \left(\tilde{W}_t^2 - \tilde{C}_t^2\right),
\]

which is the same as the special case of Model I when \(Y = 0\).

- The solution to the risky share in the transformed model is given by

\[
\tilde{\alpha}_{t}^{2*} = \alpha_{t}^{1*} |_{Y=0} = \tilde{\alpha}_{t}^{1*} \times \frac{\tilde{W}_t^2 - \tilde{C}_t^2 - X/R_f}{\tilde{W}_t^2 - \tilde{C}_t^2} \approx 1 - \frac{X}{\left(\tilde{W}_t^2 - \tilde{C}_t^2\right) R_f}.
\]

(6.4)

Note that \(\tilde{\alpha}_{t}^{1*} \approx 1\); and in the last step, we have replaced \(\tilde{W}_t^2\) and \(\tilde{C}_t^2\) with their definitions.

8. Use the following relation to back out the solution to the risky share in the original model: the amount of money that is invested in the risky assets is equal to that invested in the transformed model.

- Since the original model and the transformed model should have the same solution to the amount of wealth invested in risky assets, we have

\[
\alpha_t^2 (W_t - C_t) = \tilde{\alpha}_t^2 \left(\tilde{W}_t^2 - \tilde{C}_t^2\right) = \tilde{\alpha}_t^2 \left[(W_t - C_t) - \frac{X_t - X}{Z + R_f}\right],
\]

\[
\alpha_t^2 = \tilde{\alpha}_t^2 \left[1 - \frac{X_t - X}{(W_t - C_t) (Z + R_f)}\right] = \left[1 - \frac{X}{(W_t - C_t - \frac{X_t - X}{Z + R_f}) R_f}\right] \left[1 - \frac{X_t - X}{(W_t - C_t) (Z + R_f)}\right].
\]

(6.5)

6.1.3 Model III: Time-varying Labor Income and Fixed Habit

In this subsection, we fix external habit but allow time-varying \(Y_t\). For such a case, we define this model as Model III.
1. Define the original model.
 - Household’s optimization problem is to maximize
 \[
 \max_{\{C_t, \alpha_t\}_{t=0}^\infty} \mathbb{E}[U(C_t, X, \delta, \gamma)] \quad \text{s.t.} \quad W_{t+1} = (1 + R_{p,t+1}) (W_t + Y_t - C_t), \quad (6.6)
 \]

2. Impose restrictions such as equations (2.1) and (2.2) whenever necessary.
 - We impose the following restrictions on habit
 \[
 (Y_{t+1} - Y) = \kappa (Y_t - Y) \quad (6.7)
 \]
 where \(|\kappa| < 1\). This is the same as equation (2.1).

3. Choose an investment strategy.
 - The total household post-consumption wealth is given by \(W_t + Y_t - C_t\).
 - A fraction \(\bar{\alpha}_t^3\) of \(W_t + Y_t - C_t\) is invested in the risky assets and the rest in the risk-free asset. The return to this (partial) wealth portfolio is \(\bar{R}_{p,t+1}^3 = \bar{\alpha}_t^3 (R_t - R_f) + R_f\).

4. Write the law of motion of wealth with the investment strategy.
 - The law of motion of wealth is thus given by
 \[
 W_{t+1} = \left(1 + \bar{R}_{p,t+1}^3\right) (W_t + Y_t - C_t).
 \]

5. Define new auxiliary variables.
 - We define four new auxiliary variables, \(\tilde{W}_t^3, \tilde{C}_t^3, \tilde{X}_t^3\), and \(\bar{X}^3\):
 \[
 \tilde{W}_t^3 = W_t, \\
 \tilde{C}_t^3 = C_t - Y_t, \\
 \tilde{X}_t^3 = X - Y_t, \\
 \bar{X}^3 = X - Y.
 \]

6. Rewrite the law of motion of wealth with newly defined auxiliary variables.
 - With the two two new auxiliary variables, \(\tilde{W}_t^3\) and \(\tilde{C}_t^3\), the law of motion of wealth can be re-written as
 \[
 \tilde{W}_{t+1}^3 = \left(1 + \bar{R}_{p,t+1}^3\right) \left(\tilde{W}_t^3 - \tilde{C}_t^3\right).
 \]

7. Re-define a transformed model with auxiliary variables in a such a way that the transformed model has an analytical solution.
• Note that by definition we have $C_t - X_t = \tilde{C}_t^3 - \tilde{X}_t^3$. Thus, Model II defined in (6.6) can be rewritten as the following transformed model

$$\max_{\{\tilde{C}_t^3, \tilde{\alpha}_t^3\}_{t=0}^\infty} = \mathbb{E}[U(\tilde{C}_t^3, \tilde{X}_t^3, \delta, \gamma)] \quad \text{s.t.} \quad \tilde{W}_{t+1}^3 = (1 + \tilde{R}^3_{p,t+1}) \left(\tilde{W}_t^3 - \tilde{C}_t^3\right),$$

• In addition, it is straightforward to show that

$$\tilde{X}_{t+1}^3 - \tilde{X}^3 = \kappa \left(\tilde{X}_t^3 - \tilde{X}^3\right).$$

• This transformed model is the same model as Model II and the law of motion of \tilde{X}_t^{3*} is also the same as the one imposed in Model II.

• Thus, under the condition that expected return and the standard deviation of R_t are constant, the solution to the risky share in the transformed model is given by

$$\tilde{\alpha}_t^{3*} = \bar{\alpha}_t^{3*} = \left[1 - \frac{\tilde{X}^3}{(\tilde{W}_t^3 - \tilde{C}_t^3 - \frac{\tilde{X}_t^3 - \tilde{X}^3}{Z + R_f}) R_f} \right] \left[1 - \frac{\tilde{X}_t^3 - \tilde{X}^3}{(\tilde{W}_t^3 - \tilde{C}_t^3) (Z + R_f)} \right].$$

8. Use the following relation to back out the solution to the risky share in the original model: the amount of money that is invested in the risky assets is equal to that invested in the transformed model.

• Since the original model and the transformed model should have the same solution to the amount of wealth invested in risky assets, we have

$$\alpha_t^{3*}(W_t - C_t + Y_t) = \bar{\alpha}_t^{3*} \left(\tilde{W}_t^3 - \tilde{C}_t^3\right)$$

• By definition, we have

$$\left(\tilde{W}_t^3 - \tilde{C}_t^3\right) = (W_t - C_t + Y_t).$$

• Thus, we have

$$\alpha_t^{3*} = \bar{\alpha}_t^{3*}$$

$$= \left[1 - \frac{\tilde{X}_t^3}{(\tilde{W}_t^3 - \tilde{C}_t^3 - \frac{\tilde{X}_t^3 - \tilde{X}^3}{Z + R_f}) R_f} \right] \left[1 - \frac{\tilde{X}_t^3 - \tilde{X}^3}{(\tilde{W}_t^3 - \tilde{C}_t^3) (Z + R_f)} \right]$$

$$= \left[1 - \frac{X - Y}{(W_t - C_t + Y_t + \frac{Y_t - Y}{Z + R_f}) R_f} \right] \left[1 + \frac{Y_t - Y}{(W_t - C_t + Y_t) (Z + R_f)} \right].$$

(6.8)
6.1.4 Model IV (The Benchmark Model): Time-varying Labor Income and Time-varying Habit

In this subsection, we allow both time-varying external habit and time-varying Y_t. For such a case, we define this model as Model IV, which is also the benchmark model in our paper.

1. Define the original model.
 - Household’s optimization problem is to maximize
 \[
 \max_{\{C_t, \alpha_t\}_{t=0}^\infty} \mathbb{E}[U(C_t, X_t, \delta, \gamma)] \quad \text{s.t.} \quad W_{t+1} = (1 + R_{p,t+1}) (W_t + Y_t - C_t), \quad (6.9)
 \]

2. Impose restrictions such as equations (2.1) and (2.2) whenever necessary.
 - We impose the following restrictions on habit
 \[
 (Y_{t+1} - Y) = \kappa (Y_t - Y), \quad (6.10)

 (X_{t+1} - X) = \eta (X_t - X), \quad (6.11)
 \]
 where $|\kappa| < 1$ and $|\eta| < 1$. These are the same as equations (2.1) and (2.2).

3. Choose an investment strategy.
 - The total household post-consumption wealth is given by $W_t + Y_t - C_t$.
 - A fraction α_t of $W_t + Y_t - C_t$ is invested in the risky assets and the rest in the risk-free asset. The return to this (partial) wealth portfolio is $\tilde{R}_{p,t+1} = \alpha_t (R_t - R_f) + R_f$.

4. Write the law of motion of wealth with the investment strategy.
 - The law of motion of wealth is thus given by
 \[
 W_{t+1} = \left(1 + \tilde{R}_{p,t+1}\right) (W_t + Y_t - C_t). \]

5. Define new auxiliary variables.
 - We define four new auxiliary variables, \tilde{W}_t, \tilde{C}_t, \tilde{X}_t, and \tilde{X}:
 \[
 \tilde{W}_t = W_t, \\
 \tilde{C}_t = C_t - Y_t, \\
 \tilde{X}_t = X_t - Y_t, \\
 \tilde{X} = X - Y.
 \]

6. Rewrite the law of motion of wealth with newly defined auxiliary variables.
• With the two two new auxiliary variables, \tilde{W}_t and \tilde{C}_t, the law of motion of wealth can be re-written as

$$\tilde{W}_{t+1} = (1 + \tilde{R}_{p,t+1}) \left(\tilde{W}_t - \tilde{C}_t \right).$$

7. Re-define a transformed model with auxiliary variables in a such a way that the transformed model has an analytical solution.

• Note that by definition we have $C_t - X_t = \tilde{C}_t - \tilde{X}_t$. Thus, Model II defined in (6.9) can be rewritten as the following transformed model

$$\max_{\{C_t, \alpha_t\}_{t=0}^{\infty}} = \mathbb{E}[U(\tilde{C}_t, \tilde{X}_t, \delta, \gamma)] \quad \text{s.t.} \quad \tilde{W}_{t+1} = (1 + \tilde{R}_{p,t+1}) \left(\tilde{W}_t - \tilde{C}_t \right),$$

• In addition, we can show that

$$\tilde{X}_{t+1} - \tilde{X} = \kappa \left(\tilde{X}_t - \tilde{X} \right). \quad (6.12)$$

- We plug the definitions of \tilde{X}_{t+1}, \tilde{X}, and \tilde{X}_t into the above equation and obtain

$$(X_{t+1} - Y_{t+1}) - (X - Y) = \kappa [(X_t - Y_t) - (X - Y)].$$

- Rearrange and obtain

$$(Y_{t+1} - X) - \kappa (Y_t - X) = (X_{t+1} - X) - \kappa (X_t - X).$$

- Clearly, the left-hand-side is 0 with equation (6.10) and the right-hand-side is also 0 with equation (6.11).
- Thus, the above equation about \tilde{X}, equation (6.12), holds.

• This transformed model is the same model as Model II and the law of motion of \tilde{X}_t is also the same as the one imposed in Model II.

• Thus, under the condition that expected return and the standard deviation of R_t are constant, the solution to the risky share in the transformed model is given by

$$\tilde{\alpha}_t^* = \left[1 - \frac{\tilde{X}}{\left(\tilde{W}_t - \tilde{C}_t - \tilde{X}_t - \tilde{X} \right) R_f} \right] \left[1 - \frac{\tilde{X}_t - \tilde{X}}{\left(\tilde{W}_t - \tilde{C}_t \right) (Z + R_f)} \right],$$

where Z is defined as $Z = \left(\frac{1}{\kappa} - 1 \right) (1 + R_f)$.

8. Use the following relation to back out the solution to the risky share in the original model: the amount of money that is invested in the risky assets is equal to that invested in the transformed model.

• Since the original model and the transformed model should have the same solution
to the amount of wealth invested in risky assets, we have

\[\alpha_t^* (W_t - C_t + Y_t) = \tilde{\alpha}_t^* \left(\bar{W}_t - \bar{C}_t \right) \]

• By definition, we have

\[\left(\bar{W}_t - \bar{C}_t \right) = (W_t - C_t + Y_t). \]

• Thus, we have

\[\alpha_t^* = \tilde{\alpha}_t^* = \frac{1}{1 - \frac{\ddot{X}}{\bar{W}_t - \bar{C}_t} R_f} \left[1 - \frac{\ddot{X}_t - \ddot{X}}{(\bar{W}_t - \bar{C}_t) (Z + R_f)} \right] \left[1 - \frac{X - Y}{(W_t - C_t + Y_t + \frac{Y_t - Y}{Z + R_f}) R_f} \right] \]

(6.13)

• Equation (6.13) is Eq. (2.3) and it provides an analytical solution that enables us to discuss how the risky share responds to post consumption wealth and how time-varying labor income and time-varying external habit affect the response.

6.2 The Derivation of (2.6)

Define \(\bar{W}_t = W_t - C_t \) and \(w_t = \log(\bar{W}_t) \), we can rewrite (2.5) as

\[\alpha_t = 1 - \frac{X - Y}{(W_t - C_t + Y_t) R_f} \equiv 1 - f(w_t), \]

where \(f(w_t) = \frac{X - Y}{(e^{w_t} + Y) R_f} \). We approximate \(f(w_t) \) around a point, \(w \) the mean of wealth \(w_t \), up to the first order, and then obtain

\[f(w_t) \approx f(w) + \left[\frac{df(w_t)}{dw_t} \right]_{w_t=w} (w_t - w) \]

\[= f(w) + \frac{(X - Y)e^w}{(e^w + Y)^2 R_f} w - \frac{(X - Y)e^w}{(e^w + Y)^2 R_f} w_t \equiv f(w) + \Theta w - \Theta w_t, \]

where \(\Theta = \frac{(X - Y)e^w}{(e^w + Y)^2 R_f} \). Note the values of \(f(w) \), \(\Theta \), and \(w \) do not depend on time. Thus,

\[\alpha_t \approx 1 - [f(w) + \Theta w - \Theta w_t] = [1 - f(w) - \Theta w] + \Theta w_t. \]
By taking the first-order difference (over time), we get
\[
\Delta \alpha_t \approx \Theta \Delta w_t = \frac{X e^w}{(e^w + Y)^2 R_f} \Delta w_t - \frac{Y e^w}{(e^w + Y)^2 R_f} \Delta w_t = \rho \Delta w_t - \theta Y \Delta w_t,
\]
where \(\rho = \frac{X e^w}{(e^w + Y)^2 R_f} \) and \(\theta = \frac{e^w}{(e^w + Y)^2 R_f} \). This finishes the proof of (2.6).

References

Table 1: Summary Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Tenth percentile</th>
<th>Median</th>
<th>Ninetieth percentile</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>All households, 1984-1999 (k=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid wealth</td>
<td>158,213</td>
<td>1,063</td>
<td>53,774</td>
<td>351,004</td>
<td>3,262</td>
</tr>
<tr>
<td>Financial wealth</td>
<td>454,783</td>
<td>37,860</td>
<td>206,608</td>
<td>871,875</td>
<td>3,262</td>
</tr>
<tr>
<td>Income</td>
<td>93,216</td>
<td>25,051</td>
<td>73,417</td>
<td>160,810</td>
<td>3,262</td>
</tr>
<tr>
<td>All households, 1999-2003 (k=2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid wealth</td>
<td>203,697</td>
<td>16,981</td>
<td>63,843</td>
<td>402,042</td>
<td>3,005</td>
</tr>
<tr>
<td>Financial wealth</td>
<td>503,547</td>
<td>39,477</td>
<td>224,952</td>
<td>914,796</td>
<td>3,005</td>
</tr>
<tr>
<td>Income</td>
<td>100,238</td>
<td>27,215</td>
<td>77,011</td>
<td>174,170</td>
<td>3,003</td>
</tr>
</tbody>
</table>

Notes: Our summary statistics are slightly different from those in Brunnermeier and Nagel (2008). The reason for the discrepancy is that we corrected several typos in their program.
Table 2: First Stage Regressions: Weak Form of TVRRAI

\(k = 5 \) (1984–1999)

<table>
<thead>
<tr>
<th>Instrumental Variable</th>
<th>Below 30%</th>
<th>Above 30%</th>
<th>Below 30%</th>
<th>Above 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>-0.031**</td>
<td>0.013**</td>
<td>-0.013**</td>
<td>-0.009**</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

Explanatory variables:
- Preference shifters: \(\checkmark \) \(\checkmark \) \(\checkmark \) \(\checkmark \)
- Life-cycle controls: \(\checkmark \) \(\checkmark \) \(\checkmark \) \(\checkmark \)
- Year-region FE: \(\checkmark \) \(\checkmark \) \(\checkmark \) \(\checkmark \)

\(F \) statistics of instrument: 36 15 27 13

\(p \)-value: \([0.00] \) \([0.00] \) \([0.00] \) \([0.00] \)

\(N \): 523 766 573 786

Notes: Define \(hdlabinc5 \) and \(lhdlabinc5 \) as the labor income in the current period and in the past period, \(fw \) and \(lfw \) as the liquid wealth in the current period and in the past period, and \(svodbt \) and \(lsvodbt \) as the dollar value of other debts in the current period and in the past period. The other debts are defined in the same way as in Brunnermeier and Nagel (2008), which comprise nonmortgage debt such as credit card debt and consumer loans. As a result, \((fw + svodbt) \) and \((lfw + lsvodbt) \) denote liquid assets in the current period and in the past period, respectively. The instrumental variable, IV, is given by \(IV = \log(labfw/llabfw) \), where \(labfw = hdlabinc5/(fw + svodbt) \) and \(llabfw = lhdlabinc5/(lfw + lsvodbt) \). Heteroskedasticity- and autocorrelation-robust standard errors are used to judge the significance of estimates. ** denotes the estimate is statistically significantly different from 0 at the 5% significance level and * denotes that the estimate is statistically different from 0 at the 10% significance level.
| $k = 5$ (1984–1999) |
|-------------------------------|---|---|---|---|---|---|
| **Dependent variable:** | **Below 30%** | **Above 30%** |
| Proportion of liquid wealth invested in stocks and mutual funds | OLS1 | OLS2 | TSLS | OLS1 | OLS2 | TSLS |
| Explanatory variablesa: | | | | | | |
| $\Delta k \log \text{liquid wealth}_t$ | -.304* | -.268 | -.786 | -.160 | -.205 | .714 |
| Asset composition controls | | | | | | |
| Preference shifters | √ | √ | √ | √ | √ | √ |
| Life-cycle controls | √ | √ | √ | √ | √ | √ |
| Year-region FE | √ | √ | √ | √ | √ | √ |
| Adj. R^2 | .11 | .11 | .09 | .10 | | |
| Overidentification test | – | – | [.00] | – | – | [.00] |
| N | 496 | 496 | 565 | 688 | 688 | 766 |
| Proportion of financial wealth invested in stocks, mutual funds, equity in a private business, and home equity | | | | | | |
| Explanatory variablesa: | | | | | | |
| $\Delta k \log \text{financial wealth}_t$ | -.967** | -.681* | -4.649** | -.244 | -.374 | 1.692 |
| Asset composition controls | | | | | | |
| Preference shifters | √ | √ | √ | √ | √ | √ |
| Life-cycle controls | √ | √ | √ | √ | √ | √ |
| Year-region FE | √ | √ | √ | √ | √ | √ |
| Adj. R^2 | .15 | .17 | .20 | .21 | | |
| Overidentification test | – | – | [.00] | – | – | [.00] |
| N | 502 | 502 | 573 | 704 | 704 | 786 |

Notes: Heteroskedasticity- and autocorrelation-robust standard errors are used to judge the significance of estimates. ** denotes the estimate is statistically significantly different from 0 at the 5% significance level and * denotes that the estimate is statistically different from 0 at the 10% significance level. The difference between OLS1 and the OLS2 is that OLS2 includes “Asset composition controls” in the control variables. In particular, asset composition controls for the liquid asset share include: the labor income/liquid wealth ratio interacted with age, the business wealth/liquid wealth ratio, and the housing wealth/liquid wealth ratio. For the financial asset share, asset composition controls consist only of the labor income/financial wealth ratio interacted with age. The benchmark regression equation is given by

$$
\Delta_k \alpha_{i,j}^t = \beta^i q_{i-k,j}^t + \gamma^i \Delta_k h_{i,j}^t + \rho_i \Delta_k w_{i,j}^t - \vartheta^i y_{i,j}^t \Delta_k (w_{i,j}^t) + \epsilon_{i,j}^t, i = 1, 2.
$$
Table 4: Changes in Risky Shares: Semi-Strong Form of TVRRAI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS1</td>
<td>OLS2</td>
</tr>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of liquid wealth invested in stocks and mutual funds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explanatory variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_k \text{log liquid wealth}_t$</td>
<td>-.223**</td>
<td>-.216*</td>
</tr>
<tr>
<td>(1.114)</td>
<td>(1.121)</td>
<td>(1.108)</td>
</tr>
<tr>
<td>Asset composition controls</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Preference shifters</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Life-cycle controls</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Year-region FE</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>Overidentification test</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1,184</td>
<td>1,184</td>
</tr>
</tbody>
</table>

Dependent variable: Proportion of financial wealth invested in stocks, mutual funds, equity in a private business, and home equity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS1</td>
<td>OLS2</td>
</tr>
<tr>
<td>Explanatory variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_k \text{log financial wealth}_t$</td>
<td>-.514</td>
<td>-.465</td>
</tr>
<tr>
<td>(1.347)</td>
<td>(1.406)</td>
<td>(1.748)</td>
</tr>
<tr>
<td>Asset composition controls</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Preference shifters</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Life-cycle controls</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Year-region FE</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>.13</td>
<td>.13</td>
</tr>
<tr>
<td>Overidentification test</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1,206</td>
<td>1,206</td>
</tr>
</tbody>
</table>

Notes: Heteroskedasticity- and autocorrelation-robust standard errors are reported in parentheses, and p-values in brackets. ** denotes the estimate is statistically significantly different from 0 at the 5% significance level and * denotes that the estimate is statistically different from 0 at the 10% significance level. The difference between the OLS1 and the OLS2 is that OLS2 includes “Asset composition controls” in the control variables. In particular, asset composition controls for the liquid asset share include: the labor income/liquid wealth ratio interacted with age, the business wealth/liquid wealth ratio, and the housing wealth/liquid wealth ratio. For the financial asset share, asset composition controls consist only of the labor income/financial wealth ratio interacted with age. The regression equation is given by

$$
\Delta_k \alpha_{t,j} = \beta_{t-k,j} + \gamma \Delta_k h_{t,j} + \rho \Delta_k w_{t,j} - \vartheta_{y_{t,j}} \Delta_k w_{t,j} + \varepsilon_{t,j}.
$$
Table 5: Changes in the risky shares: Strong Form of TVRRAI: The Results in Brunnermeier and Nagel (2008)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS1</td>
<td>OLS2</td>
<td>TSLS</td>
<td>OLS1</td>
</tr>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of liquid wealth invested in stocks and mutual funds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explanatory variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_k \log \text{liquid wealth}_t$</td>
<td>-.014**</td>
<td>-.009</td>
<td>-.018</td>
<td>.023**</td>
</tr>
<tr>
<td></td>
<td>(.006)</td>
<td>(.009)</td>
<td>(.013)</td>
<td>(.011)</td>
</tr>
<tr>
<td>Asset composition controls</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Preference shifters</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Life-cycle controls</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year-region FE</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>.05</td>
<td>.05</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Overidentification test</td>
<td>–</td>
<td>–</td>
<td>[.00]</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>1,236</td>
<td>1,236</td>
<td>1,397</td>
<td>1,454</td>
</tr>
</tbody>
</table>

Dependent variable: Proportion of financial wealth invested in stocks, mutual funds, equity in a private business, and home equity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS1</td>
<td>OLS2</td>
<td>TSLS</td>
<td>OLS1</td>
</tr>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of financial wealth invested in stocks, mutual funds, equity in a private business, and home equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explanatory variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta_k \log \text{financial wealth}_t$</td>
<td>-.161**</td>
<td>-.172*</td>
<td>-.164**</td>
<td>-.108**</td>
</tr>
<tr>
<td></td>
<td>(.059)</td>
<td>(.091)</td>
<td>(.025)</td>
<td>(.031)</td>
</tr>
<tr>
<td>Asset composition controls</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Preference shifters</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Life-cycle controls</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year-region FE</td>
<td>√</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>.16</td>
<td>.16</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>Overidentification test</td>
<td>–</td>
<td>–</td>
<td>[.00]</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>1,260</td>
<td>1,260</td>
<td>1,427</td>
<td>1,487</td>
</tr>
</tbody>
</table>

Notes: Table 5 replicates Tables 4 and 5 in Brunnermeier and Nagel (2008). Heteroskedasticity-and autocorrelation-robust standard errors are reported in parentheses, and p-values in brackets. ** denotes the estimate is statistically significantly different from 0 at the 5% significance level and * denotes that the estimate is statistically different from 0 at the 10% significance level. The difference between the OLS1 and the OLS2 is that OLS2 includes “Asset composition controls” in the control variables. In particular, asset composition controls for the liquid asset share include: the labor income/liquid wealth ratio interacted with age, the business wealth/liquid wealth ratio, and the housing wealth/liquid wealth ratio. For the financial asset share, asset composition controls consist only of the labor income/financial wealth ratio interacted with age. The regression equation is given by

$$\Delta_k \alpha_{t,j} = \beta q_{t-k,j} + \gamma \Delta_k h_{t,j} + \rho \Delta_k w_{t,j} + \varepsilon_{t,j},$$
Notes: The horizontal axis represents the value we set for the threshold ratio that is used to divide the sample into two groups. The vertical axis represents the difference between ρ_2 and ρ_1. In particular, if ρ_i is not statistically different from zero, we set it at zero. OLS1 denotes the differences associated with our first OLS estimates in our tables; OLS2 denotes the differences associated with our second OLS estimates in our tables; and TSLS denotes the differences associated with our TSLS estimates in our tables. The results in panels (a)-(b) hold at the 10% significant confidence interval and the results in panels (c)-(d) hold at the 5% significant confidence interval. Panels (a)-(b) present the results associated with financial risky shares. Panels (c)-(d) present the results associated with liquid risky shares.